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Abstract – 

Construction safety training through Virtual 

Reality (VR) environments offers workers an 

interactive and immersive experience. Many complex 

interactions and realistic scenarios are possible in VR 

using accessories such as data gloves and trackers 

which allow data recording on incidents. For example, 

misinterpretation of hand signals construction 

workers give during operations may result in severe 

accidents on construction sites. This study proposes 

automatic gesture recognition to identify hand signals 

for crane rigging operations in VR training. The 

developed gesture recognition algorithm tracks 

information from a data glove and a tracker. 

Preliminary data on movements and orientation of 

hands and fingers were recorded. Mathematical 

models of hand gestures were created based on finger 

movement data. Gesture rules were created based on 

the rotation and orientation of the hand. The gesture 

models were combined with the gesture rules to 

develop the algorithm for automated gesture 

recognition. Final experiments estimated the efficacy 

of the proposed method in automatically recognizing 

crane rigging signals in real-time. The performance is 

evaluated by comparing the identified hand gestures 

with independently created ground truth labels. The 

proposed method identified static hand gestures with 

an average accuracy of 96.55 percent. This method 

recognizes the gestures along with the hand 

movements and displays the results in real-time 

equivalent to dynamic gesture recognition. More 

refined dynamic gesture recognition based on this 

method is in progress. 
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1 Introduction 

Virtual Reality (VR) environments provide new 

possibilities for advancing construction safety training. 

These computer-aided training methods develop an 

interest in workers and ensure their active participation 

[1], [2]. The workers can be subjected to complex and 

dangerous scenarios in the virtual environment without 

the possibility of injuries [3]. The trainees can receive 

personalized feedback based on their performance 

assessed from the data collected during training [4]. 

Multiplayer serious games create collaborative learning 

spaces for the participants [5] and dynamically updated 

VR training exposes the trainees to the latest work 

environment according to the construction progress [6].  

Hand gestures are widely used for communication on 

construction sites. They enable effective communication 

irrespective of the construction noises and language 

barrier between the workers [7]. There are standard hand 

signals for operations such as crane rigging [8]. However, 

misinterpretation of these predefined hand signals by the 

operator of the cranes or any other machines may cause 

severe accidents [9]. According to the U.S Bureau of 

Labor Statistics, an average of 42 crane-related deaths 

occur per year and 43 percent of the fatal crane injuries 

are from the construction industry [10]. Human error 

account for 90 per cent of crane accidents and proper 

training of crane operators and signalers is essential [11]. 

Automatic recognition and interpretation of the hand 

gestures may potentially assist in effective 

communication between the signaler and the operator. It 

improves communication in VR training scenarios 

involving multiple workers similar to the actual 

construction site. Automated gesture recognition in VR 

coupled with the collection of trainees’ behavioral data 

[6] can quantitatively estimate the effectiveness of VR

based training methods. The objective of the current

study is to automatically recognize hand signals for crane

rigging in virtual reality (VR) through data gloves. The

scope of this study is limited to identifying six classes of

hand gestures: five hand signals, including stop, raise

boom, lower boom, hoist load and lower load, and any

other unidentified hand gestures.

This paper is organized as follows. Section 2 provides 

the background on gesture recognition in VR and related 
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terminologies. The study’s methodology is described in 

Section 3 and an overview of the experiment and data 

collection is provided in Section 4. The development of 

the gesture recognition algorithm is in Section 5. Section 

6 presents the gesture recognition method and Section 7 

describes its validation. The results and discussion are 

given in Section 8. Finally, Section 9 concludes the paper 

with findings and an outlook for future work.  

2 Background 

2.1 Hand Anatomy and Movements 

The human hand is a complex biomechanical device 

that evolved over millions of years to achieve the current 

level of motor skills. It is capable of performing 

numerous tasks that involve a variety of movements. A 

typical human hand consists of a wrist, a palm and five 

fingers. The hand is composed of 27 bones as illustrated 

in Figure 1. The bones are categorized as 1) carpals in the 

wrist [short bones, 8 no.], 2) metacarpals in the palm 

[long bones, 5 no.], and 3) phalanges in fingers [long 

finger bones, 14 no.]. Each of the four fingers except the 

thumb is composed of proximal phalange, intermediate 

phalange, and distal phalange. The thumb has only two 

phalanges, proximal phalange and distal phalange. The 

placement of the metacarpal bone of the thumb enables 

its distal phalanges to oppose the distal phalanges of 

other fingers. This configuration of the thumb allows 

humans to grab objects in hand.  
 

 

Figure 1. Finger joints of a human hand [12]. 

The joints in the hand facilitate various movements of 

fingers, as illustrated in Figure 2. Hinge joints prove 1 

DOF (Degree of Freedom), i.e. flexion or extension. 

Saddle joints provide 2 DOF, i.e., flexion or extension 

and abduction or adduction. The metacarpophalangeal 

(MCP) is a saddle joint, whereas proximal 

interphalangeal (PIP), distal interphalangeal (DIP) and 

interphalangeal (IP) are hinge joints. In addition to 

carpometacarpal (CMC) joints, the thumb has two joints 

(MCP and IP) and all other fingers have three joints 

(MCP, PIP, and DIP).   

2.2 Gesture Interactions and Recognition in 

Virtual Reality 

Gesture interactions in VR are facilitated through 

different input devices such as wearable sensor-based 

devices, touch-based devices, and computer vision-based 

devices [13]. The wearable devices include data gloves, 

inertial sensors and myoelectricity sensors [14], [15]. The 

touch-based devices comprise touch screens and stylus 

pens. Different types of cameras such as monocular, 

binocular, and depth cameras constitute computer vision-

based devices. The data gloves can act as an input device 

to collect finger postures and movements. Besides, some 

data gloves have additional features to provide haptic 

feedback to the users, creating a more realistic experience 

[16]. Some of the advantages of data gloves include high 

recognition accuracy, no environmental influence, small 

data sets, and low computational power requirement. 

However, it has some shortcomings such as high cost, 

low flexibility and the need for frequent calibration.  

Gesture recognition methods in VR can be 

categorized as methods based on 1) wearable devices, 2) 

touch technology, 3) computer vision, and 4) multimodal 

interaction technology. Data gloves are one of the most 

commonly used wearable devices in VR. The gesture 

recognition based on wearable devices involve collecting 

finger posture data, extracting spatiotemporal parameters, 

selecting effective parameters, and model training [17] or 

identification by an intelligent algorithm [18]. The 

gesture recognition based on touch technology can be 

further divided into single touch and multitouch 

recognition. The $1 algorithm is a simple algorithm for 

identifying single-stroke gestures [19]. It has been 

modified to identify multi-stroke gestures with reduced 

complexity using point clouds [20]. Currently, computer 

vision-based gesture recognition methods are being 

widely implemented. This method consists of data 

collection through cameras, preprocessing, gesture 

segmentation, gesture analysis and gesture recognition 

[21]. Multimodal interaction technologies use two or 

more modalities of communication to recognize the 

instructions from the user [22]. These methods attempt to 

incorporate a more natural way of communication by the 

user for virtual interaction. 
 

 

Figure 2. Motions of human fingers of a 

construction worker wearing protective gloves. 
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2.3 Significance of the Current Study 

Data-driven methods such as deep learning have been 

widely used for gesture recognition. However, the 

existing methods have several drawbacks. These 

methods often require large datasets for training that may 

not be available for newly created VR training scenarios. 

The performance of computer vision-based methods 

depends on environmental factors such as light, skin 

color, and occlusion. The methods require several image 

processing techniques which might affect the recognition 

accuracy. The computer vision-based method may not 

capture the signals correctly in crane rigging operations 

unless multiple cameras are installed at different levels. 

Autonomous cranes might depend on the ground-based 

human operator who wears intelligent gloves.  

The interactions with VR controllers often lack the 

realistic experience during construction safety training. 

Besides, the nuances of finger movements and seamless 

coordination between real and virtual avatars are 

essential in collaborative training environments[23]. 

Therefore, data gloves and trackers were introduced to 

enhance the interactive and realistic experience in VR 

training. Automatic gesture recognition during the 

training potentially improves the communication 

between the trainees. Thus, a gesture recognition method 

for VR training has been developed in this study. A 

training scenario involving a signaler and a crane 

operator is envisioned where the communication has 

been enhanced by automatic gesture recognition. A 

gesture recognition algorithm has been developed based 

on the information streams from data gloves and trackers. 

The proposed method identifies and displays the gestures 

in real-time during the VR training. 

3 Methodology 

The overall methodology for this study consists of 

experiments and data analytics. First preliminary 

experiments were conducted to collect various data such 

as finger movement and hand orientation required for 

gesture recognition. Then, mathematical models of the 

hand gestures were created based on finger movement 

data. These gesture models were combined with the 

orientation data to develop the algorithm for automated 

gesture recognition. After that, experiments were 

designed to capture the efficacy of the proposed method 

in automatically recognizing crane rigging signals. Next, 

experiments were conducted to collect the data in run-

time and implement the proposed method. The 

performance of the method is evaluated by comparing the 

predicted hand gestures with independently created 

ground truth labels. The subsequent sections will 

describe more details regarding each of these steps. 

4 VR Experiments and Data Collection 

The current study conducts virtual reality 

experiments in two stages. The serious games for the 

experiments were developed in the game engine software 

Unity. The preliminary experiments in the first stage are 

for developing the gesture recognition algorithm 

(described in Section 6). The VR experiments in the 

second stage are for validating the gesture recognition 

method (described in Section 8). The user wears a data 

glove and tracker while making the specified gestures in 

both cases. The data corresponding to hand and finger 

movements were collected in real-time during the 

experiments. Figure 3 shows the user wearing the data 

glove and tracker ready for the experiment. The Prime X 

Haptic VR  data glove [24] is used for finger tracking. 

This data glove contains a flex sensor skeleton to capture 

the bending of the fingers. It also contains an Inertial 

Measurement Unit (IMU) with nine DOF (Degree of 

Freedom) per finger to capture relative movements. 

Collection and visualization of the data from the data 

glove are enabled by the data handling software Manus 

Core. This software also helps to live stream the finger 

movement data to Unity. The VIVE Tracker (3.0) [25] is 

mounted on the data glove to track hand movements. The 

tracker enables seamless coordination between the real 

hand and its virtual counterpart in the VR environment. 

The tracking data is collected and streamed to Unity 

through the SteamVR application [26]. 
 

 

Figure 3. A user wearing the data glove and 

tracker ready for gesture recognition. 

5 Development of Gesture Recognition 

Algorithm 

An overview of developing the gesture recognition 

algorithm is illustrated in Figure 4. It starts with 

preliminary experiments containing five selected hand 

signals for crane rigging. The experiments were 

conducted to understand the nature of hand gesture data 

for developing the recognition algorithm. The user makes 

the selected gestures in the experiment wearing a data 

glove and a tracker. Each set of the experiment contains 

one hand gesture. The current study has selected five 

crane rigging signals as shown in Figure 5: 1) stop, 2) 

306



39th International Symposium on Automation and Robotics in Construction (ISARC 2022) 

 

raise boom, 3) lower boom, 4) hoist load, and 5) lower 

load. These hand signals are dynamic i.e., they involve 

movements of the hand along with the hand gestures. The 

proposed method is designed to recognize hand gestures 

in a static position (static hand signals). However, 

continuous real-time identification of gestures enables 

dynamic gesture recognition.   

The finger data is live-streamed to the Manus Core 

and visualized in the Manus dashboard. The data viewer 

displays values of flexion, extension, abduction, 

adduction, thumb rotation and wrist rotation. The flexion 

and extension are estimated with respect to the finger 

joints, whereas abduction and adduction are estimated 

with respect to the midline of the hand and a finger joint. 

The finger data is simultaneously streamed from the 

Manus Core to Unity. Currently, the gesture models were 

created in Unity as described in the next paragraph. 
 

 

Figure 4. Development of gesture recognition 

algorithm 

 

Figure 5. Selected crane rigging signals for this 

study [8] 

Three hand gestures were selected to represent the 

finger positions in the five crane rigging signals. The 

selected hand gestures are: 1) ‘thumbs up’ (only thumb is 

straight, all other fingers are flexed), 2) ‘pointing’ (only 

index finger is straight, all other fingers are flexed) and 

‘high five’ (all fingers are straight). Note that only finger 

movements can be tracked with the data glove. 

Additional information about the hand movement is 

required for identifying the crane rigging signals. 

Mathematical models were created for the three selected 

gestures in Unity. The mathematical model of a gesture 

defines the movement of each finger in a relative scale 

with respect to the finger joints and/or midline of the 

hand. Flexion and extension of a thumb are specified 

based on CMC, MCP and IP; and that of other fingers 

based on MCP, PIP and DIP. Abduction and adduction 

of a thumb are specified based on CMC, whereas that for 

other fingers based on MCP. Thus, a library of predefined 

gesture models was created in Unity. Currently, the 

library contains three gesture models, each of which 

represents the finger positions of the selected hand 

signals as shown in Table 1. 

After creating the gesture library, gesture rules were 

generated from the hand tracking data. The movements 

of the hand are tracked in real-time through the VIVE 

tracker. The real hand will appear as a game object in 

Unity and the same object will be seen by the users in the 

virtual environment. The game object of the hand is 

hereafter referred to as the hand object. The hand object 

has an attribute called ‘transform’ that contains the 

position, rotation and scale of the object in the virtual 

environment. The current study uses the transform of the 

hand object to create rules for recognizing hand gestures.  

Table 1. Hand signals and corresponding gesture models 

in the library 

Label  Hand signal Gesture 

model 

Need more 

information 

for 

recognition? 

0 No recognition - Yes 

1 Stop HighFive Yes 

2 Raise boom ThumbsUp Yes 

3 Lower boom ThumbsUp Yes 

4 Hoist load Pointing Yes 

5 Lower load Pointing Yes 

 

Figure 6. Schematic of the Gesture rule for raise 

boom hand signal 

Consider the example of the hand signals for ‘raise 

boom’ and ‘lower boom’. Both of these hand signals have 

the same gesture model (ThumbsUp) to represent their 

finger positions. Therefore, rotation or orientation of the 

hand in the virtual environment is essential to distinguish 

between these hand signals.  Thus, the gesture rules for 

recognizing these hand signals involve a specific range 

of values for these parameters from the viewer’s 

perspective. Figure 6 shows a schematic representation 

of one of the gesture rules for the raise boom hand signal. 
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Here, the solid arrow marks represent the global 

coordinate system (X, Y, Z) for the virtual environment 

and dotted arrow marks represent the location coordinate 

system (x, y, z) for the hand object. The tolerance of 

rotation of the hand object about the y axis is denoted by 

α. The gesture rule in this scenario is: if α <= 300 for the 

gesture model ‘ThumbsUp’, the hand gesture is ‘raise 

boom’. Note that this is a simplified illustration of a 

gesture rule. Orientation and rotation of the hand object 

with respect to all other axes will be specified in the 

actual gesture rule. The gesture recognition algorithm is 

developed by combining the gesture rules and gesture 

models. A detailed description of the gesture recognition 

method is given in the next section.  

 

Figure 7. Gesture recognition method. 

6 Gesture Recognition Method 

The automated gesture recognition method proposed in 

this study is shown in Figure 7. First, the algorithm is 

implemented in actual virtual reality experiments 

containing various hand gestures. The raw hand 

movement data collected by the tracker and the finger 

movement data from the data glove are live-streamed into 

Unity. The gesture recognition algorithm is attached as a 

script to the hand object in Unity. The recognition 

algorithm runs in a fixed interval for accurately capturing 

the physics movements of the hand object. The gesture 

data from the user is evaluated in each run. First, the 

gesture library is searched to see if the current finger 

movement data match any of the predefined gesture 

models. If none of the gesture models matches the current 

gesture data, display ‘No recognition’ and proceed to the 

next frame. If any of the gesture models match with the 

current finger movement data, check the associated 

gesture rules. The orientation and rotation of the hand 

object are estimated, and the gesture rules are evaluated. 

If none of the rules is satisfied, display ‘No recognition’ 

and proceed to the next frame. Otherwise, determine the 

hand signal based on the gesture rules satisfied. Then 

display the identified hand signal and check whether the 

experiment is completed. If the experiment is complete 

stop the iteration. Otherwise, proceed to the next frame.  

  
 

 

 Figure 8. Conveying hand signals to the crane operator 

in virtual reality. The real-time predictions by the 

recognition method for each hand signal are displayed 

with the time stamp. 

7 Validating Gesture Recognition Method 

The proposed gesture recognition method (Figure 7) is 

validated by virtual reality experiments where the user 

acts as a signaler for a crane operator. In the experiments, 

the user wearing the data glove and the tracker make 

various hand gestures for a specific interval. The gestures 

involve hand signals for crane rigging operations and 

some random gestures. The gesture data are collected 

from the data glove and trackers in real-time during the 

experiments. Simultaneously the collected data is 

analyzed using the proposed method and results were 

also displayed in real-time. The display contains the 

predicted hand gesture, an associated color and time 
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stamps as shown in Figure 8. The predictions are also 

logged in a text file (.txt) as entries in the format “time 

(in seconds), predicted gesture, label”; e.g., “72.82 

RaiseBoom 2”. The entire experiment is recorded in the 

game view using the Unity recorder. The recorded videos 

of the experiments with time stamps were used to create 

ground truth labels for the gestures. The experiment was 

repeated five times. The accuracy of the recognition 

method is estimated as an average of all the repetitions.   

8 Results and Discussion 

The results of gesture identification and related 

discussion are presented in this section. The accuracy of 

the proposed recognition method for the dataset 

generated from each repetition of the experiment is 

presented in Table 2. The gesture recognition method has 

an average accuracy of 96.55 percent. The method 

delivers an accuracy above 95 % for all datasets except 

the first one. The proposed method is designed to 

recognize static hand gestures. However, the experiments 

for validation used dynamic gestures to understand the 

potential of the method in identifying actual crane rigging 

signals. Nevertheless, the gesture recognition method 

delivered an overall good performance. 

Table 2. Performance of the recognition method. 

Dataset Accuracy 

1 93.86% 

2 96.86% 

3 98.58% 

4 95.60% 

5 97.87% 

Average accuracy 96.55% 

 

The recognition results for dataset 4 is illustrated in 

Figure 9 and the results with highlighted 

misclassifications are presented in Figure 10. The gesture 

recognized by the proposed method is plotted in grey and 

the ground truth values are plotted in blue. The lines 

overlap whenever the recognized gesture is correct. Thus, 

the misclassifications can be seen are the misaligned 

parts of the grey line that was highlighted in black in 

Figure 10. The hand signal for ‘stop’ (Label 1) and other 

undefined or random gestures (Label 0) are identified 

without any mistakes. However, some instances of the 

hand signals for ‘raise boom’ (Label 2), ‘lower boom’ 

(Label 3), ‘hoist load’ (Label 4) are misidentified as the 

undefined class. The number of misidentifications is 

fewer compared to the frequency of the function call (50 

times per second) for gesture recognition. Therefore, 

these misidentifications may not result in serious 

communication problems while displaying the results 

continuously. Similarly, some instances of the hand 

signal ‘lower load’ (Label 5) are wrongly identified as 

‘hoist load’ (Label 4). These misidentifications need to 

be addressed carefully since they belong to the opposite 

category of hand signals. The potential reasons for the 

misidentifications are the strict bounds for hand 

orientation and rotation. More flexible and robust gesture 

rules are being explored with information from additional 

trackers.  

The overall accuracy of the recognition method per 

hand gesture is given in Table 3 and illustrated in Figure 

11. All gestures have been recognized with accuracy 

above 90 percent, and some of them have close to 100 

percent accuracy. Therefore, the proposed method shows 

the potential for improving the VR safety training 

scenarios involving construction site communication. 

The undefined or random gestures and hand signals for 

‘stop’, ‘lower boom’ and ‘hoist load’ are identified with 

high accuracy. However, identifying the hand signals for 

‘raise boom’ and ‘lower load’ needs further improvement. 

Since opposite hand signals of these classes were 

identified with high accuracy, the gesture models seem 

robust to represent the finger movement. More attention 

is required to refine the gesture rules that define hand 

orientation and rotation during signaling. 

 

 
Figure 9. Gesture recognition results for dataset 4. 

Gesture labels are 0: No recognition, 1: Stop, 2: 

Raise boom, 3: Lower boom, 4: Hoist load, and 5: 

Lower load. 

 
 

 
Figure 10. Gesture recognition results for dataset 

4 with misidentifications highlighted in black. 

Gesture labels are 0: No recognition, 1: Stop, 2: 
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Raise boom, 3: Lower boom, 4: Hoist load, and 5: 

Lower load. 

 

Table 3. Performance of recognition per hand gesture. 

Label  Hand gesture Overall prediction 

accuracy 

0 No recognition 99.78% 

1 Stop 99.29% 

2 Raise boom 90.61% 

3 Lower boom 98.60% 

4 Hoist load 97.64% 

5 Lower load 91.13% 

 

 

Figure 11. Accuracy of identification per hand 

gesture classes. 

9 Conclusions and future work 

An automatic gesture recognition method for 

identifying hand signals for crane rigging in virtual 

reality is proposed in this study. The gesture recognition 

method is developed based on tracking information from 

a data glove and a tracker. Gesture models were created 

to represent the finger movement during hand signals. 

The rotation and orientation of the hand for a signal are 

defined by gesture rules. A gesture recognition algorithm 

is developed by combing the gesture models and rules. 

The proposed method is validated by virtual reality 

experiments containing various hand gestures.  

The gesture recognition method delivered an average 

accuracy of 96.55 percent. Most of the gesture classes 

were identified with high accuracy. The 

misidentifications were mainly attributed to the bounds 

of the gesture rules. More robust gesture rules are being 

developed based on independent information from other 

tracking devices. The good recognition performance 

shows that this method can improve VR safety training 

scenarios involving communication between workers. 

Incorporating data gloves in VR helps articulate the hand 

signals better than conventional controllers.  

This study can be further extended to quantitatively 

estimate the effectiveness of the current communication 

methods that are being utilized in the construction site 

operations. Although the proposed method is designed to 

recognize static hand gestures, it can continuously 

recognize the hand gestures and display the results in 

real-time. Therefore, it is equivalent to dynamic gesture 

recognition to a certain extent. The future study involves 

incorporating additional trackers to capture more 

complex and dynamic hand gestures. Besides, haptic 

feedback from the data glove is being implemented to 

enhance the learning experience of the workers.  
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